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Increasing the magnitude of the parameter multiplying the nonlinear term of the nonlinear 
Schrodinger equation without changing the initial condition u(x, 0) = sech X, leads to bound 
states of an increasing number of solitons. This results in very steep gradients in space and 
time and so provides a more severe test of numerical methods than before. In particular we 
find that methods which satisfy various conservation laws theoretically may now fail to do so 
in practice. Various analytical and numerical results relevant to this situation are discussed 
and illustrated by numerical examples. (J 1985 Academic Press, Inc. 

1. INTRODUCTION 

The analytical properties of the nonlinear Schrodinger equation, 

iu,+u,,+q lu12u=0, i2= -1 (1) 

where U(X, t) is a complex-valued function defined over the whole real line and q is 
a real parameter, are well known. This is due to the fact that (1) is one of a 
relatively small number of soliton-producing equations that can be solved by the 
inverse scattering method, provided the initial condition u(x, 0) vanishes for suf- 
ficiently large 1x1 (see, e.g., Zakharov and Shabat [ 163, Strauss [ 133, Glassey [S], 
Ablowitz et al. [l], Miles [S]). 

There also exists a growing literature on the numerical solution of (1) and recent 
references include Delfour et al. [3], Grifhths et al. [6], Mitchell and Morris [9], 
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and Sanz-Serna and Manoranjan [12]. These investigations studied the numerical 
approximation of a single soliton, the interaction between two solitons, the 
emergence of solitons from arbitrary initial data, and the effect of dissipation on the 
solution. For these purposes standard numerical schemes have been modified or 
newer ones devised. All these investigations can be characterized as having used a 
relatively small value of the nonlinear coefficient q in (1). 

The main purpose of the present study is to investigate the effect of increasing the 
value of q in (1). Increasing the value of q without changing the initial condition 
may lead to a bound state of more than one soliton (Miles [8]). This type of 
solution (see Peregrine [lo] for the different types of solution allowed by the non- 
linear Schrodinger equation) is not possible, for instance, for the Korteweg de Vries 
equation (Ablowitz et al. [ 11) and has to our knowledge not been investigated 
numerically. Bound states of more than one soliton provide a more severe test for 
any numerical scheme and in Section 8 we show that great care must be taken for 
these problems. 

The first part of this paper is devoted to those analytical properties of (1) which 
prove to be most important in obtaining and interpreting our numerical results. 
These are: the relationship between dispersion and nonlinearity, instability and con- 
servation laws and finally, the existence of a bound state of more than one soliton. 

The numerical solution of (1) is considered in the second part of the paper. The 
numerical schemes stem from two different space discretizations (17) and (21) and 
three different time discretizations. The methods for discretizing the time variable 
are: 

(1) the energy-conserving, variable time step, leapfrog scheme devised by 
Sanz-Serna (see [ 11, 121); 

(2) the implicit midpoint rule, implemented in the predictor-corrector man- 
ner of Griffrths et al. [6]; and 

(3) the scheme introduced by Delfour et al. [3]. 

The relative performances of these methods will be described for a suitably difficult 
test problem. 

2. THE RELATIONSHIP BETWEEN DISPERSION AND NONLINEARITY 

It is often valuable to consider the contributions from the linear and nonlinear 
parts of (1) separately. Accordingly we consider the linear part of (I), viz. 

iv, + v,, = 0. (2) 

A general solution of (2) is given by 

v(x, t) = Jrn F(k) exp i(kx - W(k) t) dk 
-CT 

(3) 
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where 

W(k) = k2. 

W”(k) # 0 

the phase speed defined by 

Wk Ilk 

depends on k. This shows our wave to be dispersive. Furthermore, an asymptotic 
analysis, for large values of x and t, shows that the amplitude behaves as t-‘j2, 
Whitham [ 14, Sect. 11.33. 

The nonlinear terms in (1) oppose dispersion. The situation is clearly illustrated 
by Figs. 1 (a), (b), and (c) which were obtained numerically using the same initial 
condition 

u(x, 0) = sech x 

but different values of q. We note for q = 2 we obtain a precise balance of the dis- 
persion and nonlinearity which allows a single soliton to be formed. A balance also 
occurs for q = 8, 18, or in general q = 2N2 for integer N. These states correspond to 
bound states of N “solitons”-see Miles [8]. It should be pointed out that the same 
balance is obtained if q is fixed and a different initial condition is used. Thus a large 
nonlinear term q 1~1 ‘u and initial function sech x are equivalent to a term lul’u and 
a large initial function & sech x. 

Solitons are formed when a certain balance between nonlinearity and dispersion 
is reached. This is simply illustrated by the single soliton solution of (1) (cf. 
Whitham [ 14]), 

exp i {&Sx-(+S2-cl) t) sech c(“~(x--St) 

where S is the speed of the soliton and CI a real parameter which determines its 
amplitude. In this situation, using as an initial condition for (1 ), Eq. (4) with t = 0, 
the balance of the nonlinearity and dispersion is achieved for all values of q because 
q I U( ’ is independent of q. 

3. INSTABILITY AND CONSERVATION LAWS 

In this discussion of the stability of the nonlinear Schriidinger equation we 
deviate slightly from that given in Herbst et al. [7] and follow Whitham [ 143 more 
closely. We propose a perturbed solution to Eq. (1) of the form 

u(x, t)=a(t)exp(ikx)+~+(t)exp(ik+x)+~-(r)exp(ik-x) 
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FIG 1. (a) q=OS, (b)q=1.5, (c) q=2.0 

where E& are small in comparison with a. Substituting u(x, t) into Eq. (1) we obtain 

ib exp(ikx) + ii+ exp(ik+x) + ii- exp(ik-x) 

-awexp(ikx)-.5+W+ exp(ik+x)-EPWP exp(ik-x) 

+q{lu12aexp(ikx)+2 la12fz+exp(ik+x)+2 lu12&- exp(ikkx) 

+u*~:exp(i{2k-k+}x)+u2~*exp(i{2k-kP}x)+O(+))=O (5) 
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where * denotes a complex conjugate and w  = k2, wt = k2,. Thus apart from the 
original modes k, k, , two additional modes 2k - k + have been created. These new 
modes combine with the two original “side” modes k, whenever 

2k=k, +kp. (6) 

Assuming (6), compare coefficients in Eq. (5), 

icE- wa= -q la/*a 

ii: + - W+E+ = -2q jU12&+ - qa’&T (7) 

ii: ~ -W-EC= -2q lUl*Ep -qa*tz*, 

where we have ignored terms of O(E: ). Condition (6) will be satisfied if we choose 

k, =k+p, k_=k-p, for any p, 

in which case a solution of (7) is given by 

a(t) = a, exp i( - wt + q la, I * t) 

.s+(t)=s+(0)expi(qla,12-w.)texpip*texpfi vb*(~*-% Id’) f. (8) 

The important conclusion to be drawn from (8) is that the side modes E+ will grow 
for 

4 > 0, P2 < 3 I% *. (9) 

Of course this result only holds while E* are small. The long time behaviour of 
these modes is determined by the conservation laws 

lu12dx=0 
2 

d ~0 
iii -rn j ( b12-;q bl”)dx=O 

(loa) 

(lob) 

satisfied by solutions of (1). The conservation laws prevent the side modes from 
growing exponentially for an indefinite time. Although this mechanism is not per- 
fectly understood, there exists experimental and numerical evidence that all the 
modes may under favourable conditions return to their initial state, and start the 
whole process again (Yuen and Ferguson [ 151). This remarkable phenomenon is 
known as recurrence. 
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4. BOUND STATE OF MORE THAN ONE SOLITON 

It is evident from the single soliton solution (4) that it is possible to select the 
speed s and amplitude c( of the soliton separately. This allows the possibility that 
solitons with different amplitudes may move at the same speed and all the time 
interacting with one another. A precise result was obtained by Miles [S]. He 
showed that the initial condition 

u(x, 0) = sech x 

will produce a bound state of N solitons if 

(11) 

q = 2N*, N= 1, 2,.... (l-2) 

A similar result does not exist for the Korteweg de Vries equation which does not 
allow independent values for the amplitudes and velocities of its solitons. 

For the numerical results reported in Section 8, we solved (1) and (11) for 
q = (2) 8 and 18 which correspond to N = (1 ), 2 and 3 in (12). 

~.THE FINITE ELEMENT METHOD 

We approximate the solution u of (1) by U, where 

fw> t) = f uj(t) #j(X), (13) 
i=O 

U,(t) are complex valued functions of time, and dj(x) are piecewise linear basis 
functions defined with respect to a uniform grid with grid spacing h. 

According to the Galerkin finite element method the coefficients are determined 
from 

iCoT ~j)-(U.r~~~)+4(IU12U, 4jlyo9 j = O,..., m. (14) 

where a dot . denotes differentiation with respect to the time and a dash ’ with 
respect to x. In practice we find it awkward to deal with the nonlinear term appear- 
ing in (14) and product approximation (Christie et al. [2]) is used instead, i.e., the 
nonlinear term in (14) is approximated by 

(l"12u2 $ji,% f I"k12 Uk(4kY dj), 
k=O 

(15) 

In addition, instead of solving a complex system, we separate real and imaginary 
parts 

U,= Vk+iWk. (16) 
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Making use of (15) and (16), Eq. (14) becomes 

kftJ++u+qMF(u)=o 

where 

u: = (Uo,..., uJ=, 

s:= 

M:= t 

21 I 

z 41 z 
. . 

0 

-A A 

A -2A A 

0 

I:= 1 0 

( ) 0 1’ 

F : = (Fo,..., F,)=, 

uj:=cvj, Wj)’ 

0 

. . 

. . . 

z 41 z 

z 21 

0 

. . 

. . 

A -2A A 

A -A 

A:= 

Fj: = U;UjAUj, 

(17) 

(18) 

and where we have assumed natural boundary conditions (see Sect. 8). Herbst et al. 
[7] investigated the stability of (17) and, in particular, the relationship with the 
analytical results obtained in Section 3. They showed that small perturbations of 
the solution of (17) of the form 

$j(t)=dj(t)Cexpia,x 
k 

will grow exponentially in time whenever 

4 . ,ah 
q>O, $sin l<2yq 4’ (19) 
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where 
2 . ,ah 

y:= I-:sin 2, la12: = u’u. 

Again we require a mechanism to prevent these unstable modes from growing 
indefinitely. This is provided by finite element analogues of (10a) and (lob). The 
analogue of (10a) is obtained by multiplying (14) by U:, summing over all j and 
taking the imaginary part; to give 

To obtain the analogue of (lob), we multiply (14) by C$+, sum over j and take the 
real part, to give 

$ jy 00 (lli,‘-;q lU,4) dx=O. (2Ob) 

The penalty we pay for the simplification obtained from using product 
approximation is that (20a) and (20b) are no longer satisfied. However, discrete 
analogues of (20) are satisfied if we resort to mass lumping, i.e., if we replace M in 
(17) by 

I”:= 

in which case ( 17) becomes 

+I 

Z 0 
’ . 

0 I 
$1 

7U + ;SU + qTF(U) = 0. (21) 

Apart from the boundary conditions, (21) is a straightforward difference 
replacement of (l), see, e.g., Sanz-Serna and Manoranjan [12]. In a similar way as 
before, replacing integrals by appropriate summation, it can be shown that the 
theoretical solution of (21) satisfies 

-+ l(iil’j=O Wa) 

Wb) 
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It is therefore theoretically possible to have discrete analogues of (10) satisfied as 
long as the time remains continuous. Utmost care should therefore be exercised in 
discretizing the time variable, as this may be the main source of error in a dis- 
cretized scheme. 

6. CONSERVATION OF THE FIRST QUANTITY 

Discretizing the time variable, we require (20a) and (22a) to be satisfied at all 
time levels, i.e., 

and 

jT Iun12dx= jK’ ILq’dx, n = 1) 2,..., (23) 
~ % -m 

n = 1, 2,..., (24) 

where the superscript n denotes the nth time level. 
We first observe that (14) and (21) may be written in the form 

Gir = H(U) (25) 

where G: = A4 or G: = z In both cases H(U) satisfies (cf. Sanz-Serna [ 111) 

U’H(U)=O. (26) 

The implicit midpoint rule for solving (25) is given by 

GU n+‘=GU”+dtH(f(U”+U”+l)). (27) 

If we premultiply (27) by t(U” + U” + ’ )’ and make use of (26) we obtain 

U ,I + “‘GU” + 1 = Un’GUfl. 

It is not possible for (24) to be satisfied in general by solving (25) by an explicit 
scheme. However, Sanz-Serna [ll, 121 showed that by using a variable time step 
the leapfrog scheme is capable of doing this. The leapfrog scheme applied to (25) 
gives 

where 

GU “+‘=GU”-‘+(z,+z,~,)H(U”) (28) 

z .- p+l--fn 
n ‘- (29) 
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Premultiplying (28) by U”+ IT and elimination of U”+ IT from the right hand side of 
the resulting expression shows that 

U t7+‘TGU”+I=U”-ITGU”-i 

provided 

(z,+z,~,)[2U”~‘TH(U”)+(z,+r,_,)HT(U”)G-’H(U”)]=0. (30) 

From stability considerations Sanz-Serna and Manoranjan [ 121 advise the use of 

T, = 2(Un - U” ‘)‘H(Un)/HT(Un) G ‘H(V) - z, _ , (31) 

which may be obtained from (30) and (26). Because of the appearance of G-’ in 
(31) we used the choice 

G=T 

in all our numerical experiments with the leapfrog scheme (28) and (31). 
It should be pointed out that although we have derived and written the variable 

time step leapfrog scheme in a slightly different way than the originators (see, e.g., 
Sanz-Serna [ 111 and Sanz-Serna and Manoranjan [ 12]), the present scheme is in 
fact the same as the original. More specifically, given to, t’, U*, and U’ the two 
schemes produce exactly the same sequences 

t”, U”, n = 2, 3,..., 

as a comparison between our Eqs. (28) (29) (31) and eqs. (3.1), (3.2) and (4.1) of 
Sanz-Serna [ 111 shows. 

6. CONSERVATION OF THE SECOND QUANTITY 

The time discretized analogues of (20b) and (22b), are 

J- w:12-M~“)4)dx=Jm (luy-tq ~uy)dx, n = 1, 2,.. 
-cc -cc 

and 

., (32) 

(33) 
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respectively. We now return to the finite element Eqs. (14) and apply the implicit 
midpoint rule to obtain 

i(U”+’ -u”,~j)-~dt(U~+‘+U:,~~)+gdtq(~U”+’+U”~2(U”+’+U”,~j)=0. 

(34) 

Multiply (34) by U,V’+ ’ - UT”, sum over j, and take the real part to obtain 

-a Ja: p7:+‘~2dx+~qjm Iv+‘+ unl* IUn+‘12dX 
-‘x -cc 

-i Cm Iuydx+$q Cm Iu”+‘+ Uy*~Un12dx. (35) 
J -co 

Making use of the identity 

J -m 

alun+’ + u”l2=+(Iun+‘l*+ IU72)-$lU”+’ 

(35) becomes 

- UnI2, (36) 

J- (lu;+‘l’-;q IU”+‘14)dx=jm (luy-tq 
-m -m 

IU”14)dx 

++jm Iv+’ - Un(2(IUn+11 - IU”l)(IUn+‘l + IUnl)dx. 
-cc 

Thus, apart from an O(At3) term the second quantity (32) is conserved by the 
implicit midpoint rule. This quantity may clearly be conserved exactly if we ignore 
the O(At*) on the right-hand side of (36), a result first used by Delfour, Fortin, and 
Payre [3]. Thus, instead of (34) we use 

i(U”+’ - U”, (dj) - &Llt( ,:+’ + u;, 4;) 

+$!ltq((lU”+‘~2+ pY12)(Un+‘+U”),~j)=0. (37) 

Similarly (33) is satisfied theoretically if we discretize (21) using the implicit mid- 
point rule but instead of using 

$(U,“+U,“+‘)=(U,“+U~+$4(Ui”+Ui”+’) (38) 

for the nonlinear terms, we use 

f(UpJ,n+U,y+’ kJ;+‘) A(U,“+Uj”+‘). (39) 

In the next section we discuss the results of numerical experiments based on the dis- 
cretized schemes described in this paper. 



NONLINEAR SCHRijDINGEREQUATION 293 

8. NUMERICAL RESULTS 

The numerical results reported in this section are obtained by solving (1) for 
various values of q, using the initial condition (11). The following methods of 
solution are used: 

I. (17), together with the implicit midpoint rule (38). 

II. (21) together with the implicit midpoint rule (38). 

III. (17) together with the Delfour et al. modification (39). 

IV. (21) together with the Delfour et al. modification (39). 

V. (21), together with the variable time-step, leapfrog scheme (28) and (31). 

The first four schemes are implicit schemes which require a nonlinear system of 
equations to be solved at each time level. These equations may be written in the 
form 

GU n+l=p(U”,U”+l) (40) 

where G is given by 

G:= M+rS or G:= T+rS, r:= At/h=, 

and P is determined by the specific method in use. The nonlinear system (40) was 
solved by a predictor-corrector procedure. First determine U(I) by using Euler’s 
method. Successive improvements are calculated from 

GUck’ = p(U”, U’&- I)), k = 2, 3,.... (41) 

The main advantage of (41) lies in its low computational cost. Since G is time 
independent it needs to be factorized once only. After its factorization at the begin- 
ning only one forward and one backward substitution are required for each 
iteration. The computational cost of more sophisticated iteration procedures may 
become prohibitive. For instance, if a Newton type procedure is employed the 
Jacobian needs to be updated at very short time intervals due to the large temporal 
gradients we wish to compute. In addition it will be shown that (41) is adequate at 
least for methods I and III. In order to use the leapfrog scheme, method V, the first 
time step t,, and solution at the first time level must be provided. Following the 
suggestion of Sanz-Serna and Manoranjan [ 123, we used values of r0 in the vicinity 
of the linearized stability limit 

z. = ‘A2 4 . (42) 

The starting solution at t = TV will be provided by using Euler’s method or alter- 
natively the implicit midpoint rule. 

5X1:60,%9 
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We had already observed that schemes I and III do not conserve (exactly) either 
of the two quantities implicit in (20a) and (20b). Schemes II and V conserve only 
the first quantity and only scheme IV conserves both quantities. Due to round-off 
error and the computational cost of iterating (41) a large number of times, the best 
any method can do in practice is to conserve the quantities to a fixed number of 
decimal places. On the other hand the importance of the conservation laws was 
argued in Sections 3 and 5 and by Herbst et al. [7]. It is therefore of considerable 
interest to investigate the ability of the methods to conserve the quantities in prac- 
tice. 

Except when otherwise stated we adopt the following strategy in our numerical 
procedures. At each time level a certain maximum number of corrector iterations 
(cf. (41)) is specified. After each iteration the quantities 

(43b) 

are calculated and compared with the quantities C,, and C,, obtained from the 
initial condition. In order to save on computation cost, the iteration terminated 
whenever 

Because of our inability to compute over the whole real axis, we imposed natural 
boundary conditions at x = -20 and x = 20. In this manner our imposed boundary 
conditions had no influence on the solution. 

The numerical approximation of the single soliton solution of (1) with q = 2.0 
and initial condition (11) has already been thoroughly investigated without any 
problems. For instance Griffiths et al. [6] did not require to iterate the corrector as 
in (41) and Sanz-Serna and Manoranjan [12] obtained reasonable results using 
Euler’s method to provide the missing starting value required at t = rO. Even the 
case q = 8 (bound state of two solitons according to Sect. 4) does not present 
serious problems. Figures 2 and 3 show the results obtained with methods II and 
IV. In all our surface plots we show JUI as a function of time and x. In this case a 
fixed number of 10 iterations per time step was used. As was predicted theoretically, 
method IV conserved both quantities and method II the first quantity, at least to 
four decimal places. Even though method II does not conserve the second quantity 
even to two decimal places, there is no apparent difference between the two figures. 

The situation changes dramatically when we increase the value of q to 18 (bound 
state of three solitons). Again using h =0.125, the solution from IV became 
unbounded after 14 and 18 time steps for values of At = 0.0125 and 0.01, respec- 
tively. A further decrease in At to 0.005 did not lead to an unbounded solution (at 
least for the first 200 time steps); however, the iteration procedure did start having 
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FIG. 2. Method II, q = 8.0, Al = 0.0125, h = 0.125, printed every 5th step for 200 steps. 

FIG. 3. Method IV, q = 8.0, At = 0.0125, h = 0.125, printed every 5th step for 200 steps. 
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convergence problems around 36 time steps. For a value of h = 0.1 the same pattern 
emerged. For values of At = 0.0125 and 0.01 the solution became unbounded after 
15 and 47 time steps, respectively. For At = 0.01 the iteration procedure had dif- 
ficulty in converging after 17 time steps. For At = 0.005 the solution remained boun- 
ded although some difficulty to converge was noticed around 38 and after 86 time 
steps. This solution is shown in Fig. 4. The difficulties mentioned above were also 
reflected in the behaviour of the conserved quantities (43). For instance, for h = 0.1 
and At = 0.01, C,n changed from 2.0000 to 1.9417 and C2, from -5.6748 to 
-3.8983 after 17 to 21 time steps. After this time these values remained the same 
until the solution became unbounded after 47 time steps. Also, for h = 0.1 and 
At=0.005, C,” and C,fl changed from 1.9999 to 1.9175 and from -5.6251 to 
- 1.7746 respectively, after 80 to 90 time steps. After these changes the values 
remained unchanged for the remainder of our calculations. 

All the difficulties mentioned above coincided with the formation of one of the 
spikes seen in Figs. 8 and 9. At these spikes the temporal gradient of the solution is 
very large. The improved behaviour obtained when decreasing At suggests that the 
source of the trouble is our iteration scheme which has difficulty in converging from 
a bad prediction by Euler’s method using too large values of At. 

Method II also had difficulty in giving a reasonable representation of the 
analytical solution. The numerical solution using h = 0.125 and At =0.0125 is 
shown in Fig. 5. A comparison with Figs. 8 and 9 shows that this solution does not 

FIG. 4. Method IV, q = 18, At = 0.005, h = 0.1, printed every 10th step for 250 steps. 
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FIG. 5. Method II, q = 18, At = 0.0125, h =0.125, printed every 5th step for 100 steps. 

resemble the analytical solution. The difficulties are the same as with method IV. 
For instance, between 10 and 15 time steps, which coincide with the first spike, the 
values of C,” and C,” changed from 2.0000 to 1.5402 and from -5.7394 to 2.6824, 
respectively. Again an improvement is obtained if the values of h and A? are 
reduced. Figure 6 shows the solution using h = 0.1 and At = 0.005. We observed that 
the method had difficulty in converging between 85 and 115 time steps, where up to 
20 iterations (the maximum number allowed) were required. For the remainder of 
the calculations the method had no difficulty in converging. Also, no significant 

FIG. 6. Method II, q= 18, At =0.005, h =O.l, printed every 10th step for 250 steps. 
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change in the conserved quantities was observed. However, Fig. 6 shows the 
pronounced downstream oscillations which started just before the first convergence 
difficulties were encountered. Since the total energy (43a) remained within the limit 
imposed by (44), the oscillations provide a means of “leaking” energy from the cen- 
tral spine with noticable adverse effects on the quality of the solution (cf. Figs. 9 
and 10). 

Figures 7 and 8 show the solution obtained from methods I and III using 
h = 0.125 and At = 0.0125 and although the quality of the approximation may not 
be completely acceptable the solutions do resemble the analytical solution. Thus, 
even though neither quantity is conserved theoretically, somewhat surprisingly, 
these methods do better in practice than methods II and IV. 

A further improvement may be obtained by reducing the values of h and At to 0.1 
and 0.005, respectively. The results for methods I and III are shown in Figs. 9 and 
10. For these values it was possible to satisfy (44) using an average of 
approximately 3 or 4 iterations per time step. Thus, not only was the quality of the 
approximation improved but the solutions were obtained at lower computational 
cost. Again there is little difference between the two figures, even though neither 
method conserved the second quantity even to one significant figure. A further 
reduction in the values of h and At to 0.067 and 0.0025 did not have any significant 
effect on the solutions. 

Figure 11 shows the solution obtained from method I using h = 0.5, a con- 

FIG. 7. Method I, q = 18, dt = 0.0125, h = 0.125, printed every 5th step for 100 steps. 
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FIG. 8. Method III, q = 18, At = 0.0125, h = 0.125, printed every 5th step for 100 steps. 

siderable increase in the size of the space step. The interesting feature of this 
solution is that, although (44) was satisfied using just over 3 iterations per time 
step, the solutions do not resemble the solutions in Figs. 9 and 10. This may be 
explained in the terms of Section 2. A large grid spacing h does not allow an 
accurate approximation of the linear, dispersive part of (1). This leads to an 
imbalance between dispersion and nonlinearity in the numerical scheme which may 
easily result in a different solution from the one expected. 

Finally we used the leapfrog scheme, method V. Since this method is devised to 
conserve the first quantity very accurately and hopefully guarantee a good solution, 
our main interest lies in the behaviour of the time step. Figure 12 shows 5, as a 
function of n using Euler’s method to provide the extra starting values at r = Q. 
According to (42), z0 is chosen as 0.0025 when h = 0.1 (smaller and bigger values, 
r,, = 0.005 and z0 = 0.001, give less satisfactory results). From Fig. 12 it is clear that 
there is a split in the behaviour at odd and even numbers of time steps. The reason 
for this behaviour lies in the fact that Euler’s method is used to provide the extra 
starting values. Since Euler’s method does not conserve the energy, the time step is 
adjusted in such a way that different quantities are conserved at odd and even time 
levels. 

Use of the implicit midpoint rule to provide the starting values improves matters 
dramatically. Now the same quantity is conserved at all time levels and we have no 
distinction between even and odd time levels, see Fig. 13. From the figure two facts 
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FIG. 9. Method I, q= 18, A1=0.005, h=O.l, printed every 10th step for 500 steps. 

FIG. 10. Method III, q = 18, At = 0.005, h = 0.1, printed every 10th step for 500 steps. 
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FIG. 11. Method I, q = 18, AZ = 0.005, h = 0.5, printed every 20th step for 500 steps. 

+lO 
-3 

2 

1 

0 

-1 

-2 

: :  , , : : . .  I~ ‘~ 

: :  

: :  : :  

: :  

, : :  , I  

too::., ‘~ 200 :: 300 400 500 “LI ..::;::: ;: 
:: :: :: n 

:: 
:: 

FIG. 12. Method V, q = 18, h = 0.1, z,, = 0.0025, missing starting value by Euler’s method. 
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FIG. 13. Method V, q = 18, h = 0.1, T,, = 0.0025, missing starting value by the midpoint rule. 

become evident. The time step displays a periodic oscillation and, on average, is 
decreasing all the time. In order to demonstrate that this periodic behaviour is 
linked to the periodic nature of the solution as shown in Figs. 9 and 10 we show the 
value of 1 UI at x = 0 at the same time levels as z, in Fig. 14. The fact that r, is small 
when 1 Ul is large is explained by the equidistributing principle (cf. Sanz-Serna and 
Manoranjan [ 121) 

IIU n+‘-Unll = IpJ”-u”-‘II 

which is satisfied by the method. This means that the time step is small when the 
temporal gradient is large. The temporal gradient is large in the vicinity of the 
spikes, hence the small z, when I Ul is large. 
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FIG. 14. Method V, 1 W(O)1 against n. 

9. CONCLUSIONS 

By increasing the nonlinear coefficient q of the NLS, while keeping the initial 
condition (11) unchanged, a bound state of an increasing number of solitons is 
obtained. Thus very steep spatial and temporal gradients are developed which 
provide a severe test for the various numerical schemes. Our numerical experiments 
under these more stringent conditions clearly show the importance of the 
smoothing provided by the mass matrix, which confirms the earlier conclusion of 
Grifiths et al. [6]. Without the mass matrix the iterative procedures used with 
both methods (implicit midpoint rule and the Deifour scheme) had difficulty in con- 
verging. Even when this did not cause the solution to become unbounded it influen- 
ced the conservation properties of the methods and caused a loss in accuracy. 

Although the presence of the mass matrix does not allow the quantities (43a) and 
(43b) to be conserved theoretically, it did considerably improve the convergence 
properties of the iteration procedures. By using reasonably but not excessively small 
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space and time steps the improved convergence properties enabled the methods to 
conserve the two quantities fairly accurately and satisfactory numerical results were 
obtained. 

We also pointed out the dangers of using too large space steps. Even if both 
quantities are conserved with high accuracy the numerical solution may still not 
resemble the analytical solution. 

Because of the rapid change in the solution with time any efficient variable time 
step integrator should be particularly suitable for the solution of this problem. We 
found that the behaviour of the time step of method V did indeed follow the 
variation of the solution in time, provided an energy-conserving method was used 
to calculate the missing starting value. In addition, method V has the advantage of 
being explicit which means that it does not require a nonlinear system of algebraic 
equations to be solved at each time level. However, we found that the time step 
decreased to such an extent that most if not all of these advantages were lost. 

In summary, the smoothing provided by the mass-matrix significantly improved 
the performance of our numerical methods, despite the fact that it does not allow 
the two quantities (43) to be conserved theoretically. It is essential that sufficiently 
small space and time steps should be used in order to resolve the steep spatial and 
temporal gradients. Neglecting to do this resulted not only in poorer 
approximations but in inaccurate and even unbounded solutions. Under the more 
stringent conditions of our numerical tests method V held no clear advantages over 
the implicit methods due to an excessively small time step. However, because of the 
potential advantages of explicit, energy-conserving variable time-step methods, 
more research in this direction needs to be done. 
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